SCHOOL OF CHEMICAL ENGINEERING

教师登录系统

工号:

密码:

验证:

查询:

教授

王 为

现任职称/职务:教授/ 博士生导师
通讯地址:天津市天津大学化工学院应用化学系
电子邮箱:wwangg@tju.edu.cn
办公电话:022-27403389

论著专利:


作为第一发明人,获得授权的美国发明专利

HIGH-POWER ALUMINUM-AIR BATTERY SYSTEM

专利号:US9705166

作为第一发明人,获得授权的中国发明专利:

1、由一维纳米线阵列结构温差电材料制造的微温差电池

(专利号:ZL01140414.0

2、液相电沉积N-型及P-型一维纳米线阵列温差电材料及设备和制造方法(专利号:ZL02125377.3

3、一维纳米线阵列材料温差电性能测试系统(专利号:ZL02125378.1

4、电化学铝水储氢、制氢的方法及设备(专利号:ZL02148850.9

5、燃料电池的结构和制备方法(专利号:ZL 200510013287.2

6、微型温差电池及其制造方法(专利号:ZL03130568.7

7、脉冲镀镍基纳米复合镀层的方法及设备(专利号:ZL200410018745.7

8、微型薄膜温差电池的结构及其制造方法(专利号:ZL200410072381.0

9、一种微型电池组的结构及制造方法(专利号:ZL200710057067.9

10、由薄膜温差电材料制造的单层温差电器件和集成化微型温差电器件

(专利号:ZL200710057345.0

11、基于薄膜温差电材料的微型温差电器件组装系统及方法

(专利号:200810153632.6

12、薄膜温差电材料电阻率测试系统及方法(专利号:200810153570.9

13、电沉积Bi2Te3掺杂薄膜温差电材料的制备方法

(专利号:200910069904.9

14、薄膜温差电材料赛贝克系数测试系统及方法(专利号:200810153534.2

15、一种微型温差电池结构的优化方法(专利号:201110428427.8

16、微型温差电池热电转换效率测试系统及方法(专利号:201210024829.6

17、薄膜热电材料热导率测试系统及方法(专利号:201210039803.9

18、用铝-水制氢/储氢的装置及其液流方式(专利号:201210102861.1

19、由薄膜温差电材料制造的叠层结构微型温差电器件及制造方法

(专利号:201210006868.3

20、一种实现电解液水平流动及流速可控的电解池系统

(专利号:2015101582964

21、一种氯化银纳米粉体的合成方法(专利号:201810774915.6

22、一种高硅钢磁性超薄带的连续生产工艺及装置

(专利号:2020101883360

23、一种高性能氮化锰氧还原催化剂的结构及制造方法

(专利号:202011447393.2

24、通过煅烧含氮有机物原位合成氮化锰氧还原催化剂的方法

(专利号:202011449409.3

作为第一作者或者通讯作者,发表的代表性论文主要有:

[1] Electrode/electrolyte Interface Adjustment through Adding Mannitol into the Solution to Improve the Secondary Discharge Performance of Alkaline Al-Air Batteries. Journal of power sources, 20241月发表。DOI10.1016/j.jpowsour.2023.233923

[2] Investigations on Mn Shielding the Negative Effect of Fe in the Aluminum Alloy Anodes Used for Al-air Batteries. Journal of Solid State Electrochemistry, 2024年1月发表.DOI10.1007/s10008-024-05801-0

[3] Electrode/solution interface adjustment through adding acetamide into the solution for inhibiting hydrogen evolution during iron electrodeposition. Journal of Solid State Electrochemistry, 2024年2月发表。

DOI10.1007/s10008-024-05825-6

[4] Influence Mechanism of (NH4)2SO4 on the Composition and Structure of Fe-Co Alloys. Coatings, 2023, 13:629-642

[5] Coordination strategy to prepare high-performance Fe-Nx catalysts for Al-air batteries. Journal of Power Sources, 2023, 567:232988-232995

[6] Carbon-Free, Binder-Free MnO2@Mn Catalyst for Oxygen Reduction Reaction. ACS Applied Materials & Interfaces, 2023, 15, 20110−20119

[7] Efect of cetyl trimethyl ammonium bromide as an electrolyte additive on secondary discharge performance of aluminum‑air battery. IONICS,2023, 29 (5):1887-1899, March,2023

[8] Preparation of Highly dispersed FeNx activesites for oxygen redaction reaction electrocatalyst by electrospinning and complexation. Ionics, 2023, 29:1089-1099

[9] Effect of (NH4)2SO4 on the co-electrodeposition of Fe-Co alloys. Applied Surface Science, 2023, 612: 155567-155572

[10] Electrochemical Reduction and Preparation of Cu-Se Thermoelectric Thin Film in Solution with PEG. Nanomaterials, 2022, 12(18):3169-3181

[11] Effects of the pH Value on the Electrodeposition of Fe-P Alloy as a Magnetic Film Material. J. Phys. Chem. C, 2022, 126:15472-15484

[12] Investigations on the ORR Catalytic Performance Attenuation of a 1D Fe Single-Atom Catalyst during the Discharge Process. J. Phys. Chem. C, 2022, 126(10): 4826−4835

[13] Analysis of Fe(II)-Ni(II) Electrochemical Reduction Process and Electrodeposition of FeNi Films. Processes, 2022, 10:198-209

[14] Study on the Preparation of High-Temperature Resistant and Electrically Insulating h-BN Coating in Ethanol Solution by Electrophoretic Deposition Processes, 2021, 9:871-888

[15] Reducing the Internal Stress of Fe-Ni Magnetic Film Using the Electrochemical Method. Processes, 2021, 9:1883-1893

[16] Fe–N–C single-atom catalysts with an axial structure prepared by a new design and synthesis method for ORR. New J. Chem., 2021, 45: 13004–13014

[17] A high performance ORR electrocatalyst—Mn‑N5‑C/G: design, synthesis, and related mechanism. Ionics (2021) 27:3489–3499

[18] Investigations on the discharge/charge process of a novel AgCl/Ag/carbon felt composite electrode used for seawater batteries. Journal of power sources, 2021, 506:230210-230220

[19] Morphology and Structure Controls of Single-Atom Fe–N–C Catalysts Synthesized Using FePc Powders as the Precursor. Processes, 2021, (9):109-122

[20] Analysis on the secondary active site of FeN4-graphene for oxygen reduction reaction by DFT calculation. Chemical Physics Letters, 2021, 765: 138321-138327

[21] Reconstructing 1D Fe Single-atom Catalytic Structure on 2D Graphene Film for High-Efficiency Oxygen Reduction Reaction. ChemSusChem, 2020, 13, 1-11

[22] High-Performance Mg–Al–Bi Alloy Anode for Seawater Batteries and Related Mechanisms. Processes, 2020, (8): 1362-1379

[23] A Simple Synthesis Method of Single-Size AgCl Nano-Particles and Its Discharge Behavior. Journal of The Electrochemical Society, 2020, 167:130538-130548

[24] Electrochemical Redaction of Bi(Ⅲ)/Sb(Ⅲ)/Te(Ⅳ) with EDTA and Tartaric Acid in Sulfuric Solution. Journal of The Electrochemical Society, 2019, 166(14):D719-D725

[25] Systematic exploration of N,C coordination effects on the ORR performance of Mn–Nx doped graphene catalysts based on DFT calculations. Phys. Chem. Chem. Phys., 2019, 21:12826-12836

[26] Systematic exploration of N, C configurational effects on the ORR performance of Fe–N doped graphene catalysts based on DFT calculations. RSC Advances, 2019, 9: 22656-22667

[27] Investigations on the Potential Fluctuation of Al-Sn Alloys during Galvanostatic Discharge Process in Alkaline Solution. Journal of The Electrochemical Society, 2018, 165 (7): A1492-A1502

[28] Improvement of O2 adsorption for α-Mn02 as an oxygen reduction catalyst by Zr4+ doping. RSC Adv., 2018, (8): 2963-2970

[29] Electrochemical Properties of Al-based Solid Solutions Alloyed by Element Mg, Ga, Zn and Mn under the Guide of First Principles. Fuel Cells, 2017, 17(5):723-729

[30] Fabrications of Polyaniline Films by Pulse Electrodeposition in Acidic Solutions with Different Anions and Their Thermoelectric Performances. JOURNAL OF ELECTRONIC MATERIALS, 2017, 46(8):4815-4824

[31] Investigations on the Electrochemical Reduction Behaviors of Cu-Se Compound in Sulfuric Acid Solutions. JOURNAL OF ELECTRONIC MATERIALS, 2017, 46(5): 3187-3199

[32] Electrode Materials on the Electropolymerization Process of Aniline in Nitri.cAcid Media. JOURNAL OF ELECTRONIC MATERIALS, 2017, 46(2): 1324-1330

[33] Electrodeposition and Thermoelectric Properties of Cu-Se Binary Compound Films[J]. Journal of Electronic Materials, 2016, 45(3):1974-1981

[34] Pulse Electropolymerization and Thermoelectrical Performances of Carbon Nanotubes/Polyaniline Composite Film, ECS J. Solid State Sc., 2016, (5): M27-M30

[35] Electrochemical Reduction Process of BiIII, TeIV and SbIII with Complexing Agent in Hydrochloric Acid Bath, J. Electrochem. Soc., 2015, 162(6): D229-D235

[36] Preparation of Bi2Te3/Nano-SiC Composite Thermoelectric Films by Electrodeposition.JOURNAL OF ELECTRONIC MATERIALS, 2015, 44(6):2166-2171

[37] Effect of SiC Nanoparticles on the Electrochemical Reduction Behaviors of Ionic Bismuth and Tellurium.JOURNAL OF ELECTRONIC MATERIALS, 2015, 44: 1777-1784

[38] A high packing density micro-thermoelectric power generator based on film thermoelectric materials fabricated by electrodeposition technology, Surface & Coatings Technology , 2013, 231:583–589

[39] Synthesis and Characterization of CNTs/Bi2Te3 Thermoelectric Nanocomposites. Int. J. Electrochem. Sci., 2013, (8): 6686 – 6691

[40] Electrodeposition of MWNT/Bi2Te3 Composite Thermoelectric Films. Journal of Elec Materi, 2013, 42:1936-1945

[41] Effect of MWNTs on the Electrochemical Reduction Processes of Bi3+, HTeO2+, and Their Mixtures. Journal of Elec Materi, 2013, 42:2073-2083

[42] Microstructure and thermoelectric properties of p-type Bi – Sb-Te thin films prepared by electrodeposition method. Thin Solid Films, 2012, 520(7): 2474-2478

[43] Investigation on the Cu(II) and Co(II) Electrochemical Reduction Process in Citrate Solution by CV and EIS. Journal of The Electrochemical Society, 2012, 159 (6): D375-D381

[44] Electrodeposition of p-type BixSb2-xTey Thermoelectric Film from Dimethyl Sulfoxide Solution. Electrochimica Acta, 2010, 55(17): 5000-5005

[45] Electrodeposition of BixSb2-xTey Thermoelectric Films from DMSO Solution. Journal of Electronic Materials, 2010, 39(9): 1562-1565

[46] Studies on the electrochemical reduction processes of HTeO2+ by CV and EIS. Journal of Applied Electrochemistry, 2010, 40(11): 2005-2012

[47] Effect of Substrate on the Structure and Thermoelectric Properties of n-Type Bi2Te3_ySey Thin Films Prepared by Electrodeposition. Journal of Eelectric Materials, 2010, 39(9):1469-1475

[48] Adsorption Behavior and Related Mechanism of Janus Green B during Copper Via-Filling Process.JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156(4): D119-D124

[49] Invalidating Mechanism of Bis (3-sulfopropyl) Disulfide (SPS) During Copper Via-filling Process. APPLIED SURFACE SCIENCE, 2009, 255(8): 4389-4392

[50] Investigations on the Invalidated Process and Related Mechanism of PEG During Copper Via-filling Process. APPLIED SURFACE SCIENCE, 2009, 255(7): 3977-3982

[51] Studies of the Electrochemical Reduction Processes of Bi3+, HTeO2+ and Their Mixtures. APPLIED SURFACE SCIENCE, 2009, 255(16):7394-7402

[52] Investigations on the Electrodeposition Behaviors of Bi0.5Sb1.5Te3 Thin Film From Nitric Acid Baths. ELECTROCHIMICA ACTA, 2009, 54(14): 3745-3752

[53] Electrochemical Reduction Process of Sb(III) on Au Electrode Investigated by CV and EIS. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2009, 156(3): D84-D91

[54] Electrodeposition of BixSb2-xTey Thermoelectric Thin Films From Nitric Acid And Hydrochloric Acid Systems. APPLIED SURFACE SCIENCE, 2009, 255(7): 4225-4231

[55] Effect of Cl-on the Adsorption-Desorption Behavior of PEG. J. Electrochem. Soc., 2008, 155(4): D263-D269.

[56] Effect of the Substrate on the Electrodeposition of Bi2Te3-ySey Thin Films. Materials Research Bulletin, 2008, 43(7): 1808-1813

[57] Electrodeposition of n-type Bi2Te3-ySey Thermoelectric Thin Films on Stainless Steel and Gold Substrates. APPLIED SURFACE SCIENCE, 2007, 253 (6): 3360-3365

[58] Effect of the Dispersibility of ZrO2 Nanoparticles in Ni-ZrO2 Electroplated Nanocomposite Coatings on the Mechanical Properties of Nanocomposite Coatings. APPLIED SURFACE SCIENCE,2006,252 (10): 3812-3817

[59] Ni/AC膜电极-铝合金储氢电池. 无机化学学报, 2006, 21 (5): 1103-1108.

[60]中性介质中Ni/AC 析氢电催化剂的电催化行为. 无机化学学报, 2006, 22 (7): 1312-1316

[61] A New Type of Low Power Thermoelectric Micro-generator Fabricated by Nanowire Array Thermoelectric Materials. Microelectronic Engineering, 2005, 77(3-4):223-229.

[62] Fabrication and Characterization of Ni-ZrO2 Composite Nano-coatings by Pulse Electrodeposition. Scripta Materialia, 2005, 53:613-618

[63] Electrodeposition of Bismuth Telluride on Gold from Acidic Solutions. BULLETIN OF ELECTROCHEMISTRY, 2005, 21 (10): 471-479

[64] Electrochemically Assembled p-type Bi2Te3 Nanowire Arrays. JOURNAL OF APPLIED PHYSICS, 2004, 96(11):615-618.

[65] 液相电沉积技术制备n型铋碲纳米线阵列温差电材料. 无机材料学报,2004, 19(1):127-132.

[66] 电化学组装一维纳米线阵列p型Bi2Te3温差电材料. 无机材料学报, 2004, 19(3):517-522.

[67] 阳极氧化膜纳米孔阵列结构的自组织过程分析. 物理化学学报, 2004, 20(2):199-201.

[68]新型微温差电池的设计. 电源技术, 2004, 28(9):569—582.

[69] A New Technology to Measure the Thermoelectric Performance of Nanowire Arry Structure. Transactions of Tianjin university, 2002, 8(4):243

[70] Fabnrication of Bi Nanowire Array by Electrodeposition Technology.Transactions of Tianjin University.2001,37(3):207-209.

[71] 铝基材组织结构对氧化铝薄膜纳米孔阵列结构的影响. 化工学报, 2001, 52(12): 1120-1122.

[72]磷酸浓度对铝阳极氧化多孔膜阻挡层形成过程的影响. 化工学报, 2000, 51(2): 256-258.

[73] XPS, UPS and ESR Studies on the Interfacial Interaction in Ni-ZrO2 Composite Plating. Journal of Materials Science, 2000, 35: 1495-1499.

[74]氧化铝多孔膜红外吸波性能的研究. 材料工程, 1999, (9): 32-36.

[75] Preparation and Usage of Gelatin/N-Vinylpyrrolidone Graft Copolymer. Transactions of Tianjin University.1996, 2(1):53-58.

[76]白金电极上での次亚リン酸ィォンの酸化反应. 表面技術,1995,46(5):62-67。

[77]酸性溶液中における无电解ニッケルめつき皮膜の水素发生举动. 表面技術,1995,46(3):76-77。

出版专著二本

1、张宏祥,王为。电镀工艺学。天津科学技术出版社。2002年6月第一版,第一次印刷。

2、沈品华主编,王为主要编写第一章。现代电镀手册(上册)。机械工业出版社,2010。