SCHOOL OF CHEMICAL ENGINEERING

教师登录系统

工号:

密码:

验证:

查询:

教授

吕惠生

现任职称/职务:研究员/硕士生导师
通讯地址:天津大学石油化工技术开发中心
电子邮箱:hslv@tju.edu.cn
办公电话:+86(0)22- 27406119

论著专利:

1.代表性文章

[1]   Life cycle assessment for bioethanol production from whole plant cassava by integrated process[J]. Journal of Cleaner Production, 2020.

[2]    A subcritical pretreatment improved by self-produced organic acids to increase xylose yield[J]. Fuel Processing Technology, 2019,195: 106148.

[3]    Adsorption equilibria of paeoniflorin and albiflorin on cyano-silica column from supercritical carbon dioxide/ethanol[J]. Chinese Journal of Chemical Engineering, 2019,27(4): 827-834.

[4]    Autocatalytic hydrothermal pretreatment by recycling byproduct organic acids to directionally depolymerize cassava straw[J]. Process Biochemistry, 2019.

[5]    Optimization of hydrothermal pretreatment for co-utilization of xylose and glucose of cassava anaerobic residue for producing ethanol[J]. Chinese Journal of Chemical Engineering, 2019,27(4): 920-927.

[6]    The byproduct-organic acids strengthened pretreatment of cassava straw: Optimization and kinetic study[J]. Bioresource Technology, 2019,290: 121756.

[7]    Exploration and optimization of mixed acid synergistic catalysis pretreatment for maximum C5 sugars[J]. Bioresource Technology, 2018,260: 53-60.

[8]    Two-stage processing of liquid hot water pretreatment for recovering C5 and C6 sugars from cassava straw[J]. Process Biochemistry, 2018,75: 202-211.

[9]    Effect of surface oxygen vacancy sites on ethanol synthesis from acetic acid hydrogenation on a defective In2O3(110) surface[J]. Physical Chemistry Chemical Physics, 2018,2(1): 7156-7166.

[10]  Exploration of the Strengthening Effect by Byproduct-Organic Acids on Subcritical Liquid Hot Water Pretreatment[J]. Energy & Fuels, 2017,31(7): 7138-7146.

[11]  Kinetic studies of the strengthening effect on liquid hot water pretreatments by organic acids[J]. Bioresource Technology, 2017,235: 193-201.

[12]  Multi-objective regulation in autohydrolysis process of corn stover by liquid hot water pretreatment[J]. Chinese Journal of Chemical Engineering, 2017,25(4): 499-506.

[13]  Optimization of hydrothermal pretreatment for co-utilization C-5 and C-6 sugars of cassava alcohol residue[J]. Energy Conversion and Management, 2017,132: 251-260.

[14]  Adsorption equilibrium for Z-ligustilide on C18-bonded silica from supercritical carbon dioxide[J]. Chinese Journal of Chemical Engineering, 2016,24(12): 1680-1686.

[15]  Investigation of the Strengthening Process for Liquid Hot Water Pretreatments[J]. Energy & Fuels, 2016,30(2): 1103-1108.

[16]  Adsorption equilibrium of citric acid from supercritical carbon dioxide/ethanol on cyano column[J]. Chinese Journal of Chemical Engineering, 2015,23(6): 905-911.

[17]  Effect of the drying process on the preparation of porous silica microspheres[J]. Chemical Engineering Science, 2015,135: 285-293.

[18]  Pretreatment of Corn Stover Using Supercritical CO2 with Water-Ethanol as Co-solvent”, Chinese Journal of Chemical Engineering, 2013,21(5): 551-557.

[19]  Influence of supercritical CO2 pretreatment of corn stover with ethanol-water as co-solvent on lignin degradation, Chemical Engineering & Technology, 2013,36(11): 1899-1906.

[20]  Removal of Acetic Acid from Fuel Ethanol Using Ion-Exchange Resin, Energy & Fuels, 2012,26(12): 7299-7307.

[21]  Preparation of Nano-Aluminum-Zirconium oxide by Sc-CO2, The 5th international symposium on supercritical fluids, 2008, 67.

[22]  Decomposition of Cellulose to Produce-5 Hydroxyl-Furaldehyde in Subcritical Water ,Transactions of Tianjin university , 2008 , 14(3): 198-201.

[23]  苦荞活性组分超临界流体工业色谱提纯工艺[J]. 高校化学工程学报, 2020.

[24]  苦荞活性组分在SC-CO_2/CH_3OH中无限稀释扩散系数的测定及计算[J]. 高校化学工程学报, 2020,34(02): 302-310.

[25]  纤维素酒精生产过程中水稻秸秆处理工艺的研究[J]. 酿酒科技, 2019(08): 54-57.

[26]  多种原料路线的乙醇生产工艺[J]. 酿酒科技, 2019(04): 48-54.

[27]  基于超临界流体色谱技术的赤芍活性组分分离工艺[J]. 高校化学工程学报, 2018,32(02): 295-301.

[28]  芍药苷及芍药内酯苷在超临界CO_2中无限稀释扩散系数的测定与计算[J]. 高校化学工程学报, 2018,32(01): 16-23.

[29]  有机酸对甜高粱渣亚临界水解产物的影响[J]. 化工学报, 2018,69(09): 4058-4065.

[30]  超临界CO2处理玉米秸秆残留木质素形态及脱除研究[J]. 酿酒科技, 2018(03): 87-92.

[31]  超临界流体干燥技术制备液相色谱填料基质多孔硅球[J]. 化工学报, 2015,66(06): 2313-2320.

[32]  异丙醇脱水工艺技术进展. 现代化工, 2015(6):39-43.

[33]  Z-藁本内酯在超临界CO2中无限稀释扩散系数的测定与计算. 化学工业与工程, 2014, 31(6):46-52.

[34]  我国生物乙醇产品精馏脱水技术进展[J]. 酿酒科技, 2014(08): 80-84.

[35]  纤维素乙醇生产技术及产业化进展[J]. 酿酒科技, 2013(10): 80-84.

[36]  超临界流体色谱纯化Z-藁本内酯的研究[J]. 高校化学工程学报, 2013,27(05): 737-742.

[37]  超临界流体色谱纯化青蒿素的研究. 高校化学工程学报, 2010, 24(4):569-573.

[38]  冬凌草中冬凌草甲素的超临界CO_2萃取工艺研究[J]. 中草药, 2010,41(02): 232-234.

[39]  亚临界H2O-CO2体系中纤维素制备乙酰丙酸的动力学. 化学反应工程与工艺, 2008, 24(2):153-157.

[40]  我国非粮燃料乙醇生产技术进展[J]. 酿酒科技, 2008(09): 91-95.

[41]  石蒜中加兰他敏的超临界CO_2萃取工艺研究[J]. 中草药, 2008(04): 543-546.

[42]  超临界CO_2萃取烟叶中茄尼醇的影响因素分析[J]. 中草药, 2007(10): 1504-1505.

[43]  亚临界水/二氧化碳中纤维素降解制备5-羟甲基糠醛的机理及动力学,化学反应工程与工艺,2007,23(1):55 -60.

[44]  反胶团在超临界二氧化碳体系中的研究进展. 化工进展, 2005, 24(2):142-146.

[45]  杂醇油脱水工艺研究进展[J]. 酿酒科技, 2005(07): 47-50.

[46]  聚碳级双酚A结晶精制过程的研究. 化学工程, 2005, 33(6):14-17.

[47]  超临界萃取生物碱研究进展[J]. 中草药, 2004(12): 104-106.


      2.发明专利

[1]    Method for Recovering Ethylene during the Process for Producing VAC and a Device thereof: 2014/366729 [P]. 2014-12-28.

[2]    Pretreatment Method of Tuber Raw Materials: CN2013/077123[P]. 2014-11-20.

[3]    Method for Producing Alcohol from Potato Materials: CN2012/072835[P]. 2014-12-18.

[4]    一种酸溶剂在线流加装置: ZL209237897U[P]. 2019-08-13.

[5]    一种用于脱除液相中固相颗粒物的过滤装置: ZL208785965U[P]. 2019-04-26.

[6]    一种用于填料塔的规整填料: ZL207169746U[P]. 2018-04-03.

[7]    一种用于填料塔的液体分布器: ZL206793607U[P]. 2017-12-26.

[8]    以醋酸乙酯为原料生产乙醇产品的方法及装备: ZL104649862A[P]. 2015-05-27.

[9]    以醋酸为原料生产乙醇的方法: ZL104140357A[P]. 2014-11-12.

[10]  薯类原料预处理方法: ZL103276021A[P]. 2013-09-04.

[11]  纤维素乙醇生产装置及方法: ZL102643867A[P]. 2012-08-22.

[12]  醋酸乙烯生产过程乙烯回收方法及装置: ZL102516006A[P]. 2012-06-27.

[13]  薯类原料酒精生产方法: ZL102605003A[P]. 2012-07-25.

[14]  乙醇生产过程中催化反应精馏脱酸方法及装置: ZL102146018A[P]. 2011-08-10.

[15]  薯类酒精废水处理过程好氧污泥零排放工艺: ZL101823816A[P]. 2010-09-08.

[16]  燃料乙醇和食用酒精联合生产方法: ZL101648848[P]. 2010-02-17.

[17]  薯类乙醇废水高效处理方法: ZL101875527A[P]. 2010-11-03.

[18]  提高酒精废水全糟厌氧消化过程活性污泥浓度的方法: ZL101805100A[P]. 2010-08-18.

[19]  燃料乙醇与食用酒精复合工艺: ZL101648847[P]. 2010-02-17.

[20]  生物乙醇节能生产方法: ZL101717802A[P]. 2010-06-02.

[21]  一种生物乙醇制备乙酸乙烯的新方法: ZL101798265A[P]. 2010-08-11.

[22]  一种玉米秸秆预处理方法: ZL101565725[P]. 2009-10-28.

[23]  超临界体系中酶催化制备甘油二酯的方法: ZL101555500[P]. 2009-10-14.

[24]  制备生物丁醇中乙醇塔的热耦合节能系统及操作方法: ZL101530672[P]. 2009-09-16.

[25]  生物丁醇生产方法及设备: ZL101497555[P]. 2009-08-05.

[26]  生物丁醇双醪塔差压热耦合系统及操作方法: ZL101451102[P]. 2009-06-10.

[27]  生物丁醇生产过程的排杂方法: ZL101451153[P]. 2009-06-10.

[28]  薯类原料酒精生产新方法: ZL101245354[P]. 2008-08-20.

[29]  燃料乙醇生产装备及方法: ZL101157890[P]. 2008-04-09.

[30]  从石蒜或雪花莲属原料中提取加兰他敏的方法: ZL1696131[P]. 2005-11-16.

[31]  燃料乙醇生产过程中杂醇油馏分脱水的方法: ZL1644654[P]. 2005-07-27.

[32]  无水乙醇的生产方法: ZL1686986[P]. 2005-10-26.

[33]  燃料乙醇生产方法: ZL1644703[P]. 2005-07-27.

[34]  超纯乙醇精制工艺: ZL1417183[P]. 2003-05-14.

[35]  杂醇油分子筛气相脱水方法及分离提纯方法: ZL1458260[P]. 2003-11-26.

[36]  多吸附器生产无水乙醇工艺: ZL1328987[P]. 2002-01-02.

[37]  多产品酒精精制工艺: ZL1380274[P]. 2002-11-20.

[38]  具有特殊结构的新型吸附分离装置: ZL1326809[P]. 2001-12-19.