SCHOOL OF CHEMICAL ENGINEERING

教师登录系统

工号:

密码:

验证:

查询:

教授

李新刚

现任职称/职务:催化科学与工程系主任、院长助理
通讯地址:北洋园校区52-439
电子邮箱:xingang_li@tju.edu.cn
办公电话:

论著专利:


1         De-NOx in alternative lean/rich atmospheres on La1-xSrxCoO3 perovskites, X. Li*, Y. Dong, H. Xian, W. Hernandez, M. Meng*, H. Zou, A. Ma, T. Zhang, Z. Jiang, N. Tsubaki, P. Vernoux, Energy & Environmental Science 2011, 4: 3351-3354.

2         Synergetic Enhancement of Light Harvesting and Charge Separation over Surface-Disorder-Engineered TiO2 Photonic Crystals, J. Cai, M. Wu, Y. Wang, Hao Zhang, M. Meng, Y Tian, X. Li*, J. Zhang, L. Zheng, and J. Gong*, Chem 2017, 2: 877-892. Cell子刊)

3         Pd-doped perovskite: an effective catalyst for removal of NOx from lean-burn exhausts with high sulfur resistance, X. Li, C. Chen, C. Liu, H. Xian, L. Guo, J. Lv, Z. Jiang, ACS Catalysis 2013,3: 1071-1705.

4         Diesel soot elimination over potassium-promoted Co3O4 nanowires monolithic catalysts under gravitation contact mode, C. Cao, L. Xing, Y. Yang, Y. Tian, T. Ding, J. Zhang, T. Hu, L. Zheng, X. Li*, Applied Catalysis B: Environmental 2017, 218: 32-45.

5         Insights into the effects of surface/bulk defects on photocatalytic hydrogen evolution over TiO2 with exposed {001} facets, H. Zhang, J. Cai, Y. Wang, M. Wu, M. Meng, Y. Tian, X. Li*, J. Zhang, L. Zheng, Z. Jiang, J. Gong*, Applied Catalysis B: Environmental 2018, 220: 126-136.

6         Effects of Fe dopants and residual carbonates on the catalytic activities of the perovskite-type La0.7Sr0.3Co1−xFexO3 NOx storage catalyst, A. Ma, S. Wang, C. Liu, H. Xian, Q. Ding, L. Guo, M. Meng, X. Li*, Applied Catalysis B: Environmental 2014, 146: 24-34.

7         Insight into the improvement effect of the Ce doping into the SnO2 catalyst for the catalytic combustion of methane, C. Liu, H. Xian, Z. Jiang, L. Wang, J. Zhang, L. Zheng, Y. Tan, X. Li*, Applied Catalysis B: Environmental 2015, 176: 542-552.

8         One-step synthesis of H-b zeolite-enwrapped Co/Al2O3 Fischer-Tropsch catalyst with high spatial selectivity, X. Li, J. He, M. Meng, Y. Yoneyama, N. Tsubaki, Journal of Catalysis 2009, 265: 26-34.

9         In Situ Formation of Disorder-Engineered TiO2(B)-Anatase Heterophase Junction for Enhanced Photocatalytic Hydrogen Evolution, J. Cai, Y. Wang, Y. Zhu, M. Wu, H. Zhang, X. Li*, ACS Applied Materials &Interfaces 2015, 7: 24987-24992.

10     Crossed ferric oxide nanosheets supported cobalt oxide on 3-dimensional macroporous Ni foam substrate used for diesel soot elimination under self-capture contact mode, C. Cao, X. Li*, Y. Zha, J. Zhang, T. Hu, M. Meng, Nanoscale 2016, 8: 5857-5864.

11     Facilely synthesized H-Mordenite nanosheet assembly for carbonylation of dimethyl ether, Y. Liu, N. Zhao, H. Xian, Q. Cheng, Y. Tan, N. Tsubaki, X. Li*, ACS Applied Materials &Interfaces 7 2015,7: 8398-8403

12     Hydrogenated Cagelike Titania Hollow Spherical Photocatalysts for Hydrogen Evolution under Simulated Solar Light Irradiation, Y. Wang, J. Cai, M. Wu, H. Zhang, M. Meng, Y. Tian, T. Ding, J. Gong, Z. Jiang, X. Li*, ACS Applied Materials &Interfaces 2016, 8: 23006-23014.

13     NO adsorption behaviors of the MnOx catalysts in lean-burn atmospheres, L. Guo, H. Xian, Q. Li, D. Chen, Y. Tan, J. Zhang, L. Zheng, X. Li*, Journal of Hazardous Materials 2013, 260: 543-551.

14     Tuning interactions between zeolite and supported metal by physical-sputtering to achieve higher catalytic performances, X. Li*, C. Liu, J. Sun, H. Xian, Y. Tan, Z. Jiang, A. Taguchi, M. Inoue, Y. Yoneyama, T. Abe, N. Tsubaki*, Scientific Reports 2013, 3: 2813.

15     Direct Synthesis of Ethanol from Dimethyl Ether and Syngas over Combined H-Mordenite and Cu/ZnO Catalysts, X. Li*, X. San, Y. Zhang*, T. Ichii, M. Meng, Y. Tan, N. Tsubaki*, ChemSusChem 2010, 3: 1192-1199.

16     Silicalite-1 membrane encapsulated Rh/activated-carbon catalyst for hydroformylation of 1-hexene with high selectivity to normal aldehyde, X. Li*, Y. Zhang*, M. Meng, G. Yang, X. San, M. Takahashi, N. Tsubaki*, Journal of Membrane Science 2010, 347: 220-227.

17     Mesoporous SiO2-confined La0.7Sr0.3CoO3 perovskite nanoparticles: an efficient NOx adsorber for lean-burn exhausts, Q. Ding, H. Xian, Y. Tan, X. Li*, Catalysis Science & Technology 2013, 3: 1493-1496.

18     Cu/ZnO/SiO2 catalyst synthesized by reduction of ZnO-modified copper phyllosilicate for dimethyl ether steam reforming, X. Wang, K. Ma, L. Guo, Y. Tian*, Q. Cheng, X. Bai, J. Huang, T. Ding, X. Li*, Applied Catalysis A: General 540 2017,540: 37-46.

19     The monolithic transition metal oxide crossed nanosheets used for diesel soot combustion under gravitational contact mode, C. Cao, L. Xing, Y. Yang, Y. Tian, T. Ding, J. Zhang, T. Hu, L. Zheng, X. Li*, Applied Surface Science 2017, 406: 245-253.

20     Effect of phase interaction on catalytic CO oxidation over the SnO2/Al2O3 model catalyst, S. Chai, X. Bai, J. Li, C. Liu, T. Ding, Y. Tian, C. Liu, H. Xian, W. Mi, X. Li*, Applied Surface Science 2017, 402: 12-20.

21     Carbonates-Based Noble Metal-Free Lean NOx Trap Catalysts MOx-K2CO3/K2Ti8O17 (M=Ce, Fe, Cu, Co) With Superior Catalytic Performance, Y. Zhang, R. You*, D. Liu, C. Liu, X. Li*, Y. Tian, Z. Jiang, S. Zhang, Y. Zhang, Y. Zha, M. Meng*, Applied Surface Science 2015, 357: 2260-2276.

22     Influence of synthesis conditions on NO oxidation and NOx storage performances of La0.7Sr0.3MnO3 perovskite-type catalysts in lean-burn atmospheres, Y. Dong , H. Xian, J. Lv, C. Liu, L. Guo, M. Meng, Y. Tan, X. Li*, Materials Chemistry and Physics 2014, 143: 578-586.

23     Effects of Ti-doping on the NOx storage and the sulfur resistance of the BaFe1-xTixO3-y perovskite-type catalysts for lean-burn exhausts, C. Ge, L. Li, H. Xian, H. Yan, M. Meng, X. Li*, Fuel Processing Technology 2014, 120: 1-7.

24     Enhanced activity of CuO/K2CO3/MgAl2O4 catalyst for lean NOx storage and reduction at high temperatures, Y. Liu, L. Guo, D. Zhao, X. Li*, Z. Gao, T. Ding*, Y. Tian and Z. Jiang, RSC Advances 2017, 7: 27405–27414.

25     Dimethyl ether steam reforming to produce H2 over Ga-doped ZnO/gamma-Al2O3 catalysts, S. Zhou, K. Ma, Y. Tian, M. Meng, T. Ding, Y. Zha, T. Zhang, X. Li*, RSC Advances 2016, 6: 52411-52420.

26     BaFeO3-x Perovskite: An Efficient NOx Absorber with a High Sulfur Tolerance, H. Xian, X. Zhang, X. Li*, L. Li, H. Zou, M. Meng*, Q. Li, Y. Tan, N. Tsubaki, Journal of Physical Chemistry C 2010, 114: 11844-11852.

27     Insight into Copper Oxide-Tin Oxide Catalysts for the Catalytic Oxidation of Carbon Monoxide: Identification of Active Copper Species and a Reaction Mechanism, X. Bai, S. Chai, C. Liu, K. Ma, Q. Cheng, Y. Tian, T. Ding, Z. Jiang, J. Zhang, L. Zheng, and X. Li*, ChemCatChem 2017, 9: 3226-3235.

28     Oxidizing, trapping and releasing NOx over model manganese oxides in alternative lean-burn/fuel-rich atmospheres at low temperatures, L. Guo, L. Guo, D. Zhao, Z. Gao, Y. Tian, T. Ding, J. Zhang, L. Zheng, X. Li*, Catalysis Today 2017, 297: 27-35

29     Enhanced catalytic performance for CO preferential oxidation over CuO catalysts supported on highly defective CeO2 nanocrystals, C. Wang, Q. Cheng, X. Wang, K. Ma, X. Bai, S. Tan, Y. Tian*, T. Ding, L. Zheng, J. Zhang, X. Li*, Applied Surface Science 2017, 422: 932-943

30     CuO/CeO2 catalysts synthesized from Ce-UiO-66 metal-organic framework for preferential CO oxidation, C. Zhu, T. Ding, W. Gao, K. Ma, Y. Tian*, X. Li*, International Journal of Hydrogen Energy 2017, 42: 17457-17465.

31     Influence of preparation conditions to structure property, NOx and SO2 sorption behavior of the BaFeO3−x perovskite catalyst, H. Xian, F. Li, X. Li*, X. Zhang, M. Meng*, T. Zhang, N. Tsubaki*, Fuel Processing Technology 2011, 92: 1718-1724.