SCHOOL OF CHEMICAL ENGINEERING
师资队伍
Teachers查询:
知名学者
陈 刚
现任职称/职务:教授,博导通讯地址:天津市津南区雅观路135号天津大学化工学院50-C113
电子邮箱:agang@tju.edu.cn
办公电话:022-27408399
论著专利:
1. 代表性论著(★/◆—SCI/EI,*通讯作者)
[1] Fu YJ, Cheng Y, Cui Y, Xin YC, Shi SW*, Chen G*. Deformation mechanisms and differential work hardening behavior of AZ31 magnesium alloy during biaxial deformation. Journal of Magnesium and Alloys, 2020; In Press. (★/◆)
[2] Li JH, Wang ZY*, Wu H, Chen G*. Microstructural and crystallographic analysis of hydride reorientation in a zirconium alloy cladding tube. Journal of Nuclear Materials, 2020; 537: 152232. (★/◆)
[3] Cheng Y, Fu YJ, Xin YC*, Chen G*, Wu PD*,
Huang XX, Liu Q. {10-12} twinning behavior under biaxial tension of Mg-3Al-1Zn
plate. International Journal of Plasticity. 2020; 102754. (★/◆)
[4] Chen G, Feng SW, Zhang X, Cui Y*, Shi SW*.
Deformation mechanisms of zirconium alloys under biaxial tension at room
temperature. Materials Letters. 2020; 271: 127773. (★/◆)
[5] Chen G*, Wang XH, Yang J, Xu WL, Lin Q*.
Effect of micromorphology on corrosion and mechanical properties of SAC305
lead-free solders. Microelectronics Reliability. 2020; 108: 113634. (★/◆)
[6] Guo X*, Liu Y, Weng GJ, Zhu LL, Lu J, Chen
G*. Microstructure-property relations in the tensile behavior of bimodal
nanostructured metals. Advanced Engineering Materials. 2020; 202000097. (★/◆)
[7] Li JH, Cui Y*, Wu H, Chen G*. Deformation
mechanism of Zr-Sn-Nb-Fe cladding tube under various stress states. Materials
Science & Engineering A. 2020; 771: 138593. (★/◆)
[8] Chen G*, Hu T, Xie MW, Yang J, Xu WL. A new
unified constitutive model for SAC305 solder under thermo-mechanical loading.
Mechanics of Materials. 2019; 138: 103170. (★/◆)
[9] Li JH, Wang ZY, Cheng Y, Xin YC*, Chen G*.
Effect of hydride precipitation on the fatigue cracking behavior in a zirconium
alloy cladding tube. International Journal of Fatigue, 2019; 129: 105230. (★/◆)
[10] Chen G, Fu YJ, Cui Y, Gao JW, Guo X, Gao H, Wu
SZ, Lu J, Lin Q*, Shi SW*. Effect of Surface Mechanical Attrition Treatment on
Corrosion Fatigue Behavior of AZ31B Magnesium Alloy. International Journal of
Fatigue, 2019; 127: 461-469. (★/◆)
[11] Liu YM, Wang L*, Chen G*, Li BB, Wang XH,
Investigation on ratcheting-fatigue behavior and damage mechanism of GH4169 at
650 ℃. Materials Science & Engineering A. 2019; 743: 314-321. (★/◆)
[12] Sun QQ, Guo X*, Weng GJ, Chen G*.
Axial-torsional high-cycle fatigue of coarse-grained and nanostructured
metallic alloys: A 3D cohesive finite element model. Engineering Fracture
Mechanics, 2018; 195: 30-43. (★/◆)
[13] Lin Q, Shi SW*, Wang L, Chen S, Chen X, Chen
G*. Biaxial Fatigue Crack Propagation Behavior of Perfluorosulfonic-Acid
Membranes. Journal of Power Sources, 2018; 384: 58-65. (★/◆)
[14] Chen G*, Zhao XC. Constitutive modelling on the
whole-life uniaxial ratcheting behavior of sintered nano-scale silver paste at
room and high temperatures. Microelectronics Reliability. 2018; 80: 47-54. (★/◆)
[15] Chen G, Gao JW, Cui Y, Gao H, Guo X, Wu SZ.
Effects of strain rate on the low cycle fatigue behavior of AZ31B magnesium
alloy processed by SMAT. Journal of Alloys and Compounds, 2018; 735: 536-546. (★/◆)
[16] Wang XJ, Xu DK, Wu RZ, Chen XB, Peng QM, Jin L,
Xin YC, Zhang ZQ, Liu Y, Chen XH, Chen G, Deng KK, Wang HY ( All authors
contribute equally to this work). What is going on in magnesium alloys?Journal of Materials Science
& Technology, 2018; 34(2): 245-247. (★/◆)
[17] Chen G, Ren JN, Gao H, Cui Y, Chen X.
Pseudoelastic and corrosion behaviors of Mg ZEK100 alloy under cyclic loading.
International Journal of Fatigue, 2017; 103: 466-477. (★/◆)
[18] Lin Q, Shi SW*, Wang L, Chen S, Chen X, Chen
G*. In-plane Biaxial Cyclic Mechanical Behavior of Proton Exchange Membranes.
Journal of Power Sources, 2017; 360: 495-503. (★/◆)
[19] Chen G*, Zhao XC, Wu H. A critical review of
constitutive models for solders in electronic packaging. Advances in Mechanical
Engineering, 2017; 9(8): 1-21.
[20] Chen G*, Xu C, Qu H, Chen X. Ratcheting
behavior of zirconium alloy tubes under combined cyclic axial load and internal
pressure at 350 °C, Journal of Nuclear Materials, 2017; 491: 138-148. (★/◆)
[21] Chen G, Zhang X, Xu DK, Li DH, Chen X, Zhang
Z*, Multiaxial ratcheting behavior of zirconium alloy tubes under combined
cyclic axial load and internal pressure, Journal of Nuclear Materials, 2017;
489: 99-108. (★/◆)
[22] Chen G, Wu H, Gao JW, Lin Q*, Development of
high-frequency and large-stroke fatigue testing system for rubber, Review of
Scientific Instruments, 2017; 88(4): 045113. (★/◆)
[23] Shi LT, Mei YH, Chen G*, Chen X. In Situ X-Ray
Observation and Simulation of Ratcheting-Fatigue Interactions in Solder Joints,
Electronic Materials Letters, 2017; 13(1): 97-106. (★/◆)
[24] Chen G*, Zhang Y, Xu DK, Lin YC, Chen X, Low
Cycle Fatigue and Creep-Fatigue Interaction Behavior of Nickel-Base Superalloy
GH4169 at Elevated Temperature of 650 oC, Materials Science & Engineering
A. 2016; 655: 175-182. (★/◆)
[25] Chen G*, Lin Q, Chen S, Chen X, In-plane
biaxial ratcheting behavior of PVDF UF membrane, Polymer Testing, 2016; 50:
41-48. (★/◆)
[26] Chen G*, Lu LT, Cui Y, Xing RS, Gao H, Chen X,
Ratcheting and fatigue characterizations for extruded AZ31B Mg alloy with and
without corrosion environment, International Journal of Fatigue, 2015; 80:
364-371. (★/◆)
[27] Chen G, Cui SB, You L, Li Y, Mei YH*, Chen X,
Experimental study on multi-step creep properties of rat skins, Journal of the
Mechanical Behavior of Biomedical Materials. 2015; 46: 49-58. (★/◆) "
[28] Liang T, Chen X, Cheng HC, Chen G*, Ling X,
Thermal aging effect on the ratcheting-fatigue behavior of Z2CND18.12N
stainless steel. International Journal of Fatigue, 2015; 72: 19-26. (★/◆)
[29] Chen G, Liang HQ, Wang L, Mei YH*, Chen X.
Multiaxial ratcheting-fatigue interaction on acrylonitrile-butadiene-styrene
terpolymer (ABS). Polymer Engineering and Science. 2015; 55 (3): 664-671. (★/◆)
[30] Wang L, Chen G*, Zhu JB, Sun XH, Mei YH, Chen
X, Bending ratcheting behavior of pressurized straight Z2CND18.12N stainless
steel pipe. Structural Engineering and Mechanics, An International Journal.
2014; 52 (6): 1135-1156. (★/◆)
[31] Chen G, Zhang ZS, Mei YH*, Li X, Yu DJ, Wang L,
Chen X. Applying Viscoplastic Constitutive Models to Predict Ratcheting
Behavior of Sintered Nanosilver Lap-Shear Joint. Mechanics of Materials. 2014;
72: 61-71. (★/◆)
[32] Chen G, Yu L, Mei YH*, Li X, Chen X, Lu GQ.
Reliability Comparison between SAC305 Joint and Sintered Nanosilver Joint at
High Temperatures for Power Electronic Packaging. Journal of Materials
Processing Technology. 2014; 214(9): 1900-1908. (★/◆)
[33] Fu SC, Gao H, Chen G*, Gao LL, Chen X.
Deterioration of mechanical properties for pre-corroded AZ31 sheet in simulated
physiological environment. Materials Science & Engineering A. 2014; 593:
153-162. (★/◆)
[34] Chen G, Yu L, Mei YH*, Li X, Lu GQ, Chen X. Uniaxial
Ratcheting Behavior of Sintered Nanosilver Joint for Electronic Packaging.
Materials Science & Engineering A. 2014; 591: 121-129. (★/◆)
[35] Mei YH, Cao YJ, Chen G*, Li X, Lu GQ, Chen X.
Characterization and Reliability of Sinter Nanosilver Joints by A Rapid
Current-Assisted Method for Power Electronics Packaging. IEEE Transactions on
Device and Materials Reliability. 2014; 14(1): 262-267. (★/◆)
[36] Li X, Chen G*, Wang L, Mei YH, Chen X, Lu GQ.
Creep Properties of Low-Temperature Sintered Nano-Silver Lap Shear Joints.
Materials Science & Engineering A. 2013; 579: 108-113. (★/◆)
[37] Mei YH, Chen G*, Cao YJ, Li X, Han D, Chen X.
Simplification of Low-Temperature Sintering Nanosilver for Power Electronics
Packaging. Journal of Electronic Materials, 2013; 42(6): 1209-1218. (★/◆)
[38] Mei YH, Cao YJ, Chen G*, Li X, Lu GQ, Chen X.
Rapid Sintering Nanosilver Joint by Pulse-Current for Power Electronics
Packaging. IEEE Transactions on Device and Materials Reliability. 2013;13(1):
258-265. (★/◆)
[39] Chen G, Zhang ZS, Mei YH*, Li X, Lu GQ, Chen X.
Ratcheting Behavior of Sandwiched Assembly Joined by Sintered Nanosilver for
Power Electronics Packaging. Microelectronics Reliability. 2013; 53(4):
645-651. (★/◆)
[40] Mei YH, Chen G*, Li X, Lu GQ, Chen X. Evolution
of Curvature under Thermal Cycling in Sandwich Assembly Bonded by Sintered
Nano-silver Paste, Soldering & Surface Mount Technology. 2013; 25(2):
107-116. (★/◆)
[41] Wen MJ, Li H, Yu DJ, Chen G*, Chen X. Uniaxial
ratcheting behavior of Zircaloy-4 tubes at room temperature. Materials &
Design. 2013; 46, 426-434. (★/◆)
[42] Li X, Chen G*, Chen X, Lu GQ, Wang L, Mei YH.
High temperature ratcheting behavior of nano-silver paste sintered lap shear
joint under cyclic shear force. Microelectronics Reliability. 2013; 53(1):
174-181. (★/◆)
[43] Mei YH, Wang T, Cao X, Chen G*, Lu GQ, Chen X.
Transient Thermal Impedance Measurement on Low-Temperature Sintered Nano-silver
Joints. Journal of Electronic Materials. 2012; 41 (11) : 3152-3160. (★/◆)
[44] Chen G, Cao YJ, Mei YH*, Han D, Li X, Lu GQ,
Chen X. Pressures-Assisted Low-Temperature Sintering of Nanosilver Paste for
5×5 mm2 Chip Attachment, IEEE Transactions on Components and Packaging
Technology. 2012; 2 (11): 1759-1767. (★/◆)
[45] Li X, Chen G*, Chen X, Lu GQ, Wang L, Mei YH.
Mechanical Property Evaluation of Nano-Silver Paste Sintered Joint Using
Lap-Shear Test. Soldering & Surface Mount Technology. 2012; 24:120-6. (★/◆)
[46] Chen G, Sun XH, Nie P, Mei YH*, Lu GQ, Chen X.
High-Temperature Creep Behavior of Low-Temperature-Sintered Nano-Silver Paste
Films. Journal of Electronic Materials. 2012; 41:782-90. (★/◆)
[47] Chen G, Han D, Mei YH*, Cao X, Wang T, Chen X,
et al. Transient Thermal Performance of IGBT Power Modules attached by
Low-Temperature Sintered Nano-Silver., IEEE Transactions on Device and
Materials Reliability. 2012; 12(1): 124-32. (★/◆)
[48] Chen G, Shan SC, Chen X*, Yuan H. Ratcheting
and fatigue properties of the high-nitrogen steel X13CrMnMoN18-14-3 under
cyclic loading. Computational Materials Science. 2009; 46: 572-8. (★/◆)
[49] Chen G, Chen X*, Kim KS, Abdel-Karim M, Sakane
M. Strain rate dependent constitutive model of multiaxial ratchetting of
63Sn–37Pb solder. ASME Transaction on Journal of Electronic Packaging. 2007;
129: 278. (★/◆)
[50] Chen G, Chen X*. Fatigue damage coupled
constitutive model for 63Sn37Pb solder under proportional and non-proportional
loading. Mechanics of materials. 2007; 39:11-23. (★/◆)
[51] Chen G, Chen X*, Niu CD. Uniaxial ratcheting
behavior of 63Sn37Pb solder with loading histories and stress rates. Materials
Science & Engineering: A. 2006; 421: 238-44. (★/◆)
[52] Chen G, Chen X*. Constitutive and damage model
for 63Sn37Pb solder under uniaxial and torsional cyclic loading. International
Journal of solids and structures. 2006;43:3596-612. (★/◆)
[53] Chen G, Chen X*. Finite element analysis of
fleXBGA reliability. Soldering & Surface Mount Technology. 2006; 18(2):
46-53. (★/◆)
[54] Chen G, Luo XM, Chen X*, Zhang WH. The
Influence of HAZ on Fatigue Life of 16Mn Steel. Advanced Materials Research.
2008; 44: 323-328. (◆)
[55] Li T, Chen G*, Zhang Q, Chen X. Ratcheting
Boundary Analysis of Straight and Elbow Piping. Advanced Materials Research.
2010; 118: 131-135. (◆)
[56] Chen G*, You L, Li Y, Cui SB, Chen X, Research
on Cyclic Mechanical Behavior of Rat Skin. Journal of Tianjin University, 2015;
48(5): 401-408. (◆)
2. 授权专利
[1] 一种大型双轴原位面内透射式疲劳试验机,201710502135.1,陈刚,林强,王磊
[2] 三维缺陷重构原位试验装置,201610487773.6,陈刚
[3] 一种微型无回隙透射式疲劳试验机,201710502133.2,陈刚,林强,王磊
[4] 轴向与内压复合载荷作用下薄管专用夹具,201510934217.4,陈刚,张旭,陈旭
[5] 一种微米级尺寸试样拉扭疲劳性能试验用夹具,2015104976811,付巳超,陈旭,陈刚
[6] 一种用于微型拉扭疲劳试验机的扭矩测量装置及方法,201510497821.5,付巳超,陈刚,陈旭
[7] 可不同放置和试验取向的微型拉扭疲劳试验机,201510497033.6,付巳超,陈刚,陈旭
[8] 用于断裂韧度的施力点位移和缺口张开位移的测量方法,201310755294.4,陈旭,张喆,陈刚,李珞,石磊
[9] 管道弯头多轴棘轮应变测试系统及方法,201010599442.4,陈旭,梅云辉,陈刚,高炳军,余伟炜,薛飞
[10] 直管多轴棘轮应变测试系统及方法,201010600661.X,陈旭,梅云辉,陈刚,高炳军,余伟炜,薛飞
[11] 高频响应高温拉-扭疲劳引伸计,200410072189.1,陈旭,陈刚,于德华
[12] 一种接触载荷实时可调的微动疲劳试验方法及其试验机,201510311531.7,陈旭,李建军,陈刚
[13] 拉伸疲劳试验机平板试样的原位对中夹持装置及方法,201820512406.1,陈刚,李江华
[14] 一种功率模块全自动热压成型装置,201720817362.9,陈刚,林强,王磊
[15] 一种原位双轴裂纹扩展路径自动跟踪测量系统,201720747091.4,陈刚,林强,石守稳,王磊
[16] 一种剪切试验夹具,201720758053.9,陈刚,林强
[17] 一种用于生物材料力学测试的冷冻夹具,201720748663.9,陈刚,林强
[18] 一种用于丝状材料拉伸试验的夹具,201720748658.8,陈刚,林强
[19] 一种用于橡胶疲劳性能测试的宽频响大行程实验装置,201720301745.0,陈刚,高健文,吴昊,林强,王磊
[20] 一种用于实现夹持橡胶试样的夹具,201521100002.4,陈刚,林强,刘媛
[21] 一种实现夹持板状试样的夹具,201621340798.5,陈刚,林强,尚志伟
[22] 微型宽频拉-扭疲劳试验机,200420029811.6,陈旭,陈刚