SCHOOL OF CHEMICAL ENGINEERING
师资队伍
Teachers查询:
副教授
肖 殷
现任职称/职务:副教授,博士生导师通讯地址:天津大学50教学楼b508
电子邮箱:xiaoyin@tju.edu.cn
办公电话:27404208
论著专利:
[1] C.Y Ye, J.W Jiang, S.L Zou, W.B Mi*, Y. Xiao*, Core–Shell Three-Dimensional Perovskite Nanocrystals with Chiral-Induced Spin Selectivity for Room-Temperature Spin Light-Emitting Diodes, J. Am. Chem. Soc. 2022, 144, 22, 9707.
[2] C.J Guo, Y. Xiao*, Negatively charged cyclodextrins: Synthesis and applications in chiral analysis-A review, Carbohydr. Polym., 2021, 256, 117517.
[3] W. Liu, R,J Li, J. Liu, X. F. Ma, Y. Xiao*, Y. Wang*, Nacre-like ultra-robust supramolecular-functionalized graphene oxide membrane for bifunctional separation, Carbon, 2021, 618.
[4] L. Li, J.J Zhang, H.T Dai, D.Y Cai, C.J Guo, Y. Xiao*, X.F. Ma, Y. Wang*, A Bio-inspired Extended-Gate Metal-Oxide-Semiconductor Field-Effect-Transistor for Highly Sensitive Amino Acid Enantiodiscrimination, Anal. Chem. 2021, 93, 43, 14425.
[5] K. Wang, Y. Xiao*, Chirality in polythiophenes: A review, Chirality. 2021, 33, 424.
[6] X.Y Zhao, Y. Wang*, P. Zhang, Z.M Lu, Y. Xiao*, Recent Advances of Molecularly Imprinted Polymers Based on Cyclodextrin, Macromol. Rapid Commun. 2021, 42, 2100004
[7] H.D Han, W. Liu, Y. Xiao*, X.F Ma, Y. Wang*, Advances of enantioselective solid membranes, New J. Chem., 2021, 45, 6586.
[8] S.S Shi, Y. Wang, S.Y. Zeng, Y. Cui, Y. Xiao*, Surface Regulation of CsPbBr3 Quantum Dots for Standard Blue-Emission with Boosted PLQY, Adv. Opt. Mat., 2020, 2000167.
[9] S.Y. Zeng, S.S. Shi, S.R. Wang, Y. Xiao*, Mixed-ligand engineering of quasi-2D perovskites for efficient sky-blue light-emitting diodes, J. Mater. Chem. C, 2020, 8, 1319.
[10] Y.F. Wu, X.P. Wang, X.X. Li, Y. Xiao*, Y. Wang, Cyclodextrin derivatives functionalized highly sensitive chiral sensor based on organic field-effect transistor. Chin. Chem. Lett., 2020, 31, 99.
[11] Y.F. Wu, Y. Xiao*, X.P. Wang, X.X. Li, Y. Wang*, Chirality Discrimination at the Single Molecule Level by Using a Cationic Supermolecule Quasi-Gated Organic Field Effect Transistor, ACS sensors, 2019, 4, 2009.
[12] S.Y. Wang, Le Li, Y. Xiao*, Y. Wang*, Recent advances in cyclodextrins-based chiral-recognizing platforms, Trends Anal. Chem., 2019, 121, 115691.
[13] X.P. Wang, Y. Wang, Y.F. Wu, Y. Xiao*, A highly sensitive and versatile chiral sensor based on a top-gate organic field effect transistor functionalized with thiolated β-cyclodextrin. Analyst, 2019, 144, 2611.
[14] Y.W. Sun, Y. Wang*, Y.F. Wu, X.P. Wang, X.G. Li, S.R. Wang, Y. Xiao*, A Chiral Organic Field-Effect Transistor with a Cyclodextrin Modulated Copper Hexadecafluorophthalocyanine Semiconductive Layer as the Sensing Unit, Anal. Chem., 2018, 90, 9264.
[15] X.X. Li, X.B. Yao, Y. Xiao*, and Y. Wang*, Enantioseparation of single layer native cyclodextrin chiral stationary phases: Effect of cyclodextrin orientation and a modeling study, Anal. Chim. Acta, 2017, 990, 174-184.
[16] Y. Chen, Y. Xiao*, Z.J Su, X.N. Shao, S.R. Wang, X.G. Li, Morphological evolution of nanocrystalline metal phthalocyanines and their applications in field-effect transistors, Mater. Lett., 2017, 191.
[17] Z.J. Su, Y. Chen, X.G. Li, S.R. Wang, Y. Xiao*, The modulation of opto-electronic properties of CH3NH3PbBr3 crystal, J. Mater. Sci-mater. El., 2017, 28, 11053.
[18] X.B. Yao, H. Zheng, Y. Zhang, X.F. Ma, Y. Xiao*, and Y. Wang*, Engineering thiol-ene click chemistry for the fabrication of novel structurally well-defined multifunctional cyclodextrin separation materials for enhanced enantioseparation, Anal. Chem., 2016, 88, 4955.
[19] H.L. Liu, S.R. Wang, Y. Xiao*, Q.H. Yang, X.G. Li, Charging behavior of carbon black in a low-permittivity media based on acid-base charging theory, J. Mater. Chem. C, 2015, 3, 3980.
[20] J.J. Wang, S.R. Wang, X.G. Li, L.F. Zhu, Q.B. Meng, Y. Xiao*, D.M. Li, Novel hole transporting materials with a linear π-conjugated structure for highly efficient perovskite solar cells, Chem. Commun., 2014, 50, 5829 (Inside cover).
[21] Y.K. Song, S.T. Lv, X.C. Liu, X.G. Li, S.R. Wang, H.Y. Wei, D.M. Li, Y. Xiao*, Q.B. Meng, Energy level tuning of TPB-based hole-transporting materials for high efficient perovskite solar cells, Chem. Commun., 2014, 50, 15239.
[22] X.S. Ma, S.R. Wang, X.G. Li, Y. Xiao*, Thermally induced crystallization behavior and film microstructure alteration of N,N,N',N'-tetraphenyl-benzidine (TPB) and N,N,N',N'-tetra--tolyl-benzidine (TTB), Org. Electron., 2014, 15, 1876.
[23] Y. Fang, S.R. Wang, Y. Xiao*, X.G. Li, Preparation and properties of red inorganic hollow nanospheres for electrophoretic display, Appl. Surf. Sci., 2014, 317, 319.
[24] X.N. Shao, S.R. Wang, X.G. Li, Z.J. Su, Y. Chen, Y. Xiao*, Single component p-, ambipolar and n-type OTFTs based on fluorinated copper phthalocyanines, Dyes. Pigments, 2016, 132, 378.
[25] W.Z. Gao, S.R. Wang, Y. Xiao* et al., Study on synthesis and properties of novel luminescent hole transporting materials based on N,N’-di(p-tolyl)-N,N’-diphenyl-1,1’-biphenyl-4,4’-diamine core, Dyes. Pigments, 2013, 97, 92.
[26] W.Z. Gao, S.R. Wang, Y. Xiao*, X.G. Li, Synthesis and properties of new luminescent hole transporting materials containing triphenylamine and carbazole units, Spectrochim. Acta, Part A, 2012, 98, 215.
[27] Y.Xiao, S.C. Ng, Y. Wang*, T.T.Y. Tan*, Recent development of cyclodextrin chiral stationary phases and their applications in chromatography, J. Chromatogr. A., 2012, 1269, 52-68.
[28] Y. Xiao, T.T.Y. Tan*, S.C. Ng*, Enantioseparation of dansyl amino acids by ultra-high pressure liquid chromatography using cationic -cyclodextrins as chiral additives, Analyst, 2011, 136, 1433-1439.
[29] Y. Xiao, Y. Wang, D.J. Young, S.C. Ng*, T.T.Y. Tan*, Chiral capillary electrophoresis with cationic pyrrolidinium-β-cyclodextrin derivatives as chiral selectors, J. sep.sci., 2010, 33, 1797-1805.
[30] Y. Xiao, T.T. Ong, T.T.Y. Tan*, S.C. Ng*, Synthesis and application of a novel single-isomer mono-6-deoxy-6-(3R,4R-dihydroxypyrrolidine)-β-cyclodextrin chloride as a chiral selector in capillary electrophoresis, J. Chromatogr. A., 2009, 1216, 994-999.